Disk Density Tuning of a Maximal Random Packing

نویسندگان

  • Mohamed S. Ebeida
  • Ahmad A. Rushdi
  • Muhammad A. Awad
  • Ahmed H. Mahmoud
  • Dong-Ming Yan
  • Shawn A. English
  • John D. Owens
  • Chandrajit L. Bajaj
  • Scott A. Mitchell
چکیده

We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing fraction for hard disk random heaps

Structures for the ramdam distributions of disks in one dimension are used ta calculate trie packing density of two dimensional random heaps of disks. Trie calculated values are compared with those obtained from computer simulations. Studies bave been done on trie random

متن کامل

The Forest Hiding Problem

Let Ω be a disk of radius R in the plane. A set F of closed unit disks contained in Ω forms a maximal packing if the unit disks are pairwise disjoint and the set is maximal: i.e., it is not possible to add another disk to F while maintaining the packing property. A point p is hidden within the “forest” defined by F if any ray with apex p intersects some disk of F : that is, a person standing at...

متن کامل

Dense Packings of Random Binary Assemblies of Disks

The most dense random packings of binary assemblies of hard disks in the plane are considered for the case of disks with a small diRerence in their radii. An expression for the dependence of the packing density on the relative diRerence in disk sizes, disk concentration, and mean value of the gaps is derived. The computer simulation of the random dense packing is carried out using various algor...

متن کامل

Wall Effect in 3D Simulation Of Same Sized Particles Packing

In this paper, the effects of container size on the porosity of random loose packing of mono size particles have been investigated using an Event Dynamics (ED) based model. Simultaneous effects of square container walls on particles packing and their order are also investigated. Our simulation results indicate higher container size will increase the total packing factor and high density regions...

متن کامل

A CONSTRAINT ON THE RANDOM PACKING OF DISKSbyRichard

This paper addresses random packing of equal-sized disks in a manner such that no disk has a gap on its circumference large enough to accommodate an extra touching neighbour. This structure generalises the deterministic packing models discussed in classical geometry (Coxeter, 1961; Hilbert and Cohn-Vossen, 1952). Relationships with the dual mosaic formed by joining the centres of touching disks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer graphics forum : journal of the European Association for Computer Graphics

دوره 35 5  شماره 

صفحات  -

تاریخ انتشار 2016